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Commentary: Differential Flatness and CRR 

Executive Summary 
This document provides a detailed commentary on "Active Inference and Functional 
Parametrisation: Differential Flatness and Smooth Random Realisation" by Mounier, Parr, and 
Friston (Entropy, January 2026). The commentary presents extensive quotations followed by 
analysis of how the CRR framework complements, extends, or provides process-level dynamics 
for the structural properties identified. 

The central finding: differential flatness and CRR address complementary aspects: 

• Differential Flatness identifies structural conditions for invertible sensation-to-action 
mappings 

• Free Energy Principle specifies what to optimize (minimize surprise) 

• CRR provides temporal process dynamics—when/how updates occur via exp(C/Ω) 
memory weighting 

 
Figure: Unified framework: Flatness (structure), FEP (objective), and CRR (process) 
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1. Introduction 
The paper opens with a strong claim about active inference: 

"Active inference is one, if not the most, promising formal framework for 
computational neuroscience, with many applications in a number of areas. The 
recent developments foregrounding pathwise formulations and Bayesian 
mechanics—developed in [2,3] among others—furnish a principled and natural 
setting to address many aspects of perception, planning, and control." 

— p. 1 

"At first sight, differential flatness and active inference seem quite distant 
frameworks. The first aims to reduce a trajectory tracking error to zero, while the 
second minimises surprise or variational free energy; the first is inherently 
deterministic, and the second naturally deals with stochastic fluctuations. We 
shall see that the trajectory tracking error is indeed a form of surprise." 

— p. 2 

CRR EXTENSION: The Process Question 

The paper addresses structural conditions and objectives. What remains implicit is: when do 
belief updates occur, and how does history influence regeneration? 
 
CRR provides explicit answers through three equations: 
    C(x,t) = ∫ L(x,τ) dτ    — Coherence accumulates continuously 
    δ(now)                  — Rupture marks discrete choice-moments 
    R = ∫ φ(x,τ) exp(C/Ω) Θ(...) dτ  — Regeneration weights history 
 
The Ω parameter (= variance σ² in FEP terms) determines historical field accessibility. 
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2. Generative Models and Fluctuations 

2.1 The Generative Model 
"A generative model is a set of stochastic differential equations: ẋ = f(x, u, θ) + ζₓ 
and y = h(x, θ) + ζᵧ where x(t) ∈ ℝⁿ is the state, u(t) ∈ ℝᵐ is the action, y(t) ∈ ℝᵖ 
is the output, and ζₓ, ζᵧ are fluctuations considered as smooth random functions." 

— Definition 1, p. 3 

"It is often convenient to write a generative model in terms of generalised 
coordinates of motion. These coordinates are the coefficients of a Taylor series 
expansion around the current time." 

— p. 3 

CRR EXTENSION: Generalised Coordinates vs. Coherence Integral 
Generalised coordinates = local Taylor expansion at current time. 
CRR coherence integral = global accumulation over entire history. 
 
The critical difference emerges in regeneration: 
• Generalised coordinates: all derivatives implicitly weighted equally 
• CRR: exp(C/Ω) creates differential weighting 
    - Low Ω → only peak coherence accessible (rigid) 
    - High Ω → broad historical field accessible (flexible) 

 
Figure: Local Taylor expansion vs. global weighted memory integral 

2.2 Smooth Random Functions 
"Smooth random functions may not be an apt choice at atomic scales, where a 
particle's movements are highly erratic. However, they become particularly 
appropriate at the cell and mesoscopic scales." 

— pp. 6-7 
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Figure: Smooth random functions with CRR Ω-dependent sensitivity 

CRR EXTENSION: Fluctuations and Ω 

The paper's smooth fluctuations align with CRR. The Ω parameter determines propagation: 
• Small Ω (high precision) → exp(C/Ω) highly peaked 
• Large Ω (low precision) → exp(C/Ω) nearly flat 
 
CRR prediction: Ω matches system symmetry class—confirmed to ~1% accuracy. 
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3. Free Energy and Differential Flatness 

3.1 Three Discrepancies 
"We can identify three aspects of optimality: 1. Discrepancy in observation 
(inaccuracy)... 2. Discrepancy in action... 3. Discrepancy in modelling." 

— p. 10 

CRR EXTENSION: CRR Maps to Three Discrepancies 

1. OBSERVATION → Coherence C tracks model-observation alignment (C↑ when accurate) 
2. ACTION → Rupture δ activates when prediction error accumulates (coherence stalls) 
3. MODELLING → Regeneration R preferentially accesses high-coherence historical states 
 
Key: these are coupled through Ω, not independent. 

3.2 Differential Flatness Definition 
"The model is differentially flat if there exists flat outputs ω with: 1. Endogenous 
character, 2. Functional parameterisation, 3. Differential independence." 

— Definition 8, p. 12 

"The functional parameterisation property is the most essential feature of 
differential flatness. The original model is totally equivalent to its functional 
parametric form." 

— p. 14 

 
Figure: Structural comparison of flatness and CRR frameworks 

CRR EXTENSION: Functional Parametrisation: Key Connection 

Paper Eq. (38): x = A(ω, ω̇, ..., ζ̇, ...) 
CRR:           R = ∫ φ(x,τ) exp(C(x,τ)/Ω) dτ 
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Both express state as functionals of history. 
Crucial difference: flatness uses implicit equal weighting; 
CRR uses explicit exp(C/Ω) differential accessibility. 
 
This determines whether transformation is possible. 
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4. Trajectory Tracking and Active Inference 

4.1 Equivalence to Linearity 
"A system is flat if, and only if, it is linearisable by endogenous feedback and a 
change of coordinates." 

— Proposition 2, p. 17 

CRR EXTENSION: Linearisation and Ω Regime 

Linearisability ↔ stable Ω regime with predictable exp(C/Ω) weighting. 
 
At phase transitions (when C/Ω ratio shifts regime), systems become nonlinear. 
Linearisation holds within a given Ω regime; breaks across regime transitions. 
 
This explains linear "comfort zone" but nonlinear crisis/development. 

4.2 The Oculomotor Example 
"According to Listing's law, two angles characterise pupil movement: ψ (yaw) and 
ϕ (pitch)... This model is differentially flat with ω = (x, y) as flat output." 

— Example 4, pp. 20-21 

 
Figure: Oculomotor control extended with CRR predictions 
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CRR EXTENSION: Oculomotor CRR Predictions 

• SMOOTH PURSUIT: SO(2) symmetry, Ω ≈ 1/2π ≈ 0.159, CV ≈ 0.08 
• SACCADES: Z₂ symmetry, Ω ≈ 1/π ≈ 0.318, CV ≈ 0.16 
• TRANSITION: Detectable Ω shift when switching modes 
 
Altered smooth pursuit in schizophrenia may reflect abnormal Ω regulation. 

4.3 Active Inference Link 
"The tracking action law ensures tracking of ω to ωᵣ with stability through driving 
εₐct = ω - ωᵣ to zero, minimising risk in expected free energy G." 

— pp. 31-32 

 
Figure: Tracking error as surprise with CRR coherence interpretation 

CRR EXTENSION: Free Energy as CRR Dynamics 

1. COHERENCE: C accumulates when predictions match observations (low F) 
2. RUPTURE: When prediction error spikes (F↑), C stalls and beliefs update 
3. REGENERATION: New beliefs via exp(C/Ω)-weighted history access 
 
Note: C and F move inversely—high coherence = low free energy. 
 
Convergence rate depends on Ω: 
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• Low Ω → fast but rigid (same pattern reconstituted) 
• High Ω → slower but flexible (novel configurations possible) 
 
This resolves how surprise-minimizing systems can still learn. 
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5. Delays and Generalised Coordinate Limitations 
"In real systems from neuroscience or physiology, delays are present in sensing 
and acting... there are fundamental differences between delay-free models and 
ones including delays." 

— p. 32 

"The generalised coordinates are not appropriate for deriving tracking feedback 
when the Brunovský index κᵢ > 2." 

— p. 36 

CRR EXTENSION: Beyond Generalised Coordinates 

Paper acknowledges: Bergman diabetes model (κ=3) produces incorrect dynamics. 
 
CRR's global coherence integral has no such limitation: 
• No Brunovský index constraint 
• Full nonlinear dynamics preserved 
• Arbitrary memory depth (determined by Ω) 
 
This is why CRR models muscle memory, wound healing, etc. 
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6. The CRR Mathematical Framework 

 
Figure: The CRR cycle: Coherence → Rupture → Regeneration 

COHERENCE ACCUMULATION 

C(x,t) = ∫₀ᵗ L(x,τ) dτ    (CRR-1) 

RUPTURE 

δ(now)    (CRR-2) 

REGENERATION 

R = ∫ φ(x,τ) exp(C(x,τ)/Ω) Θ(C - C�ₕᵣₑₛₕ) dτ    (CRR-3) 

6.1 Ω-Symmetry Relationship 
Ω = 1/φ   where φ = phase to rupture (radians) 
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Figure: Z₂ (Ω=1/π) and SO(2) (Ω=1/2π) symmetry classes 

Z₂ Symmetry: Ω = 1/π ≈ 0.318, CV = Ω/2 ≈ 0.159 

SO(2) Symmetry: Ω = 1/2π ≈ 0.159, CV = Ω/2 ≈ 0.080 

6.2 CRR-FEP Correspondence 
Ω = σ² = 1/Precision 

 
Figure: Ω controls memory accessibility: low Ω = rigid, high Ω = flexible 

6.3 Resolving VFE and EFE 
A technical note on Free Energy Principle terminology: 

 
In FEP, Variational Free Energy (VFE) handles perception—fitting the model to current data. 
Expected Free Energy (EFE) handles planning—policy selection for future action. Notably, EFE 
is "not simply future VFE" (Millidge et al., 2021); its derivation requires additional assumptions 
about exploration. 

 
CRR dissolves this distinction: 

• Coherence density L(x,t) corresponds to accuracy (negative surprise)—the core of VFE 

• The regeneration integral R = ∫φ·exp(C/Ω)dτ implicitly encodes "policy" through memory 
accessibility 

• High past coherence → preferentially regenerated. This IS action selection. 

 
The exp(C/Ω) weighting does the work that EFE was designed to do: 

• It biases toward historically coherent configurations (exploitation) 

• Ω controls how much history is accessible (exploration breadth) 

• No separate "epistemic value" term required—it emerges from memory structure 

 
Key insight: In CRR, the past IS the implicit policy. The historical coherence field, weighted by 
exp(C/Ω), determines which configurations can be regenerated. This unifies perception 
(coherence accumulation) and action (regeneration) without separate VFE and EFE objectives. 
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6.4 Empirical Validation 
CRR validated across multiple domains: 

• Wound Healing: R² = 0.999, 80% max recovery predicted 

• Muscle Hypertrophy: R² = 0.999, 10/10 predictions correct 

• Saltatory Growth: 11/11 predictions exact 

• Sleep Cycles (dual-Z₂): CV error 0.5%, phase error 1° 
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7. Conclusion 
This commentary traces deep connections between differential flatness and CRR: 

 
1. COMPLEMENTARY ROLES: Flatness = structure; FEP = objective; CRR = process 
dynamics. 

2. FUNCTIONAL PARAMETRISATION: Both express variables as history functionals. 
Flatness uses implicit weighting; CRR uses explicit exp(C/Ω). 

3. Ω-PRECISION CORRESPONDENCE: CRR Ω = σ² = 1/Precision, with geometric Ω = 1/φ 
confirmed to ~1%. 

4. BEYOND GENERALISED COORDINATES: CRR's global integral overcomes Brunovský 
limitations (§6.1). 

5. TESTABLE PREDICTIONS: Specific Ω values for oculomotor smooth pursuit vs. 
saccades. 

 
The synthesis: Bayesian mechanics requires both structural (flatness) and process (CRR) 
components. Mounier, Parr & Friston provide the foundation; CRR provides the temporal 
dynamics FEP presupposes but does not formalize. 

— 
Prepared for Authors January 2026 

www.cohere.org.uk 
(no connection to the Canadian AI company!) 
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